
Classification with Naive Bayes

Benjamin Roth
(Many thanks to Helmut Schmid for parts of the slides)

Centrum für Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universität München

beroth@cis.uni-muenchen.de

Benjamin Roth (Many thanks to Helmut Schmid for parts of the slides) (CIS)Classification with Naive Bayes 1 / 50



Mathematical basics
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Random experiment

Statistics is about the probability of events:

Example: How likely is it to have six correct numbers in the lottery?

Random experiment: Experiment (trial) with several possible outputs
(throw of two dices)

Outcome: Result of an experiment (3 eyes on dice 1 and 4 eyes on dice 2)

Sample space Ω: Set of all possible outcomes

Event: Subset of the sample space (7 eyes on two dices)

Sample: Series of results in a repeated experiment
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Probability distribution

Probability distribution: Function that assigns a value between 0 and 1
to each outcome, such that ∑

o∈Ω

p(o) = 1

The probability of a event is the sum of the probabilities of the
corresponding outcomes.

Example:

probability that the number of eyes when throwing a dice is an even number
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Conditional and a priori probability

Conditional probability: Probability of an event A, if the event B is
known:

P(A|B) =
P(A ∩ B)

P(B)

Example: Probability that the number of points in a dice is even if the number of

points is greater than 3

A priori probability P(A): Probability of event A without knowing event
B
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Random variables

Random variable: Function that assigns a real number to each outcome.

Example: Mapping of grades very good, good, satisfactory, sufficient, poor,

insufficient to the numbers 1, 2, 3, 4, 5, 6

Example: Mapping of grades very good, good, satisfactory, sufficient, poor,

insufficient to the numbers 0, 1 (non-pass, pass)

A random variable is called discrete if it takes only a finite number or
countably infinite values.

The above examples thus describe a discrete random variables.

Probability of a value x of the random variable X :

P(X = x) = p(x) = P(Ax)

A random variable with only the values 0 and 1 is called Bernoulli
experiment.
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Joint distributions and marginal distributions

The joint distribution of two random variables X and Y :

p(x , y) = P(X = x ,Y = y) = P(Ax ∩ Ay )

The marginal distribution of two random variables X and Y :

pX (x) =
∑

y p(x , y) pY (y) =
∑

x p(x , y)

Independence: The random variables X and Y are statistically
independent if:

p(x , y) = pX (x)pY (y)

Example: When throwing two dice, their numbers are statistically independent to

each other.

Benjamin Roth (Many thanks to Helmut Schmid for parts of the slides) (CIS)Classification with Naive Bayes 7 / 50



Important rules

Chain rule: A joint probabilities can be converted into a product of con-
ditional probabilities.

P(A1 ∩ A2 ∩ ... ∩ An) = P(A1)P(A2|A1)...P(An|A1 ∩ ... ∩ An−1)

=
n∏

i=1

P(Ai |A1 ∩ ... ∩ Ai−1)

Theorem of Bayes: allows to ”reverse” a conditional probability

P(A|B) =
P(B|A)P(A)

P(B)
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Probability estimation

p̃(x) =
n(x)

N

The relative frequency n(x)/N is the number of occurrences (counts)
n(x) an event x divided by the sample size n.

With growing sample size n, the relative frequency converges to the actual
probability of an event.

More precisely: the probability that the relative frequency differs more than
ε from the actual probability converges to 0 for increasing sample size.
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Probability estimation by relative frequency
Example:

Random event: word occurrence is a specific word
n(x): Number of occurrences (counts) of the word in a corpus
N: Number of word occurrences in the corpus.

word n(word) p̃(word)

meet

deadline

single

...

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching
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Probability estimation by relative frequency
Example:

Random event: word occurrence is a specific word
n(x): Number of occurrences (counts) of the word in a corpus
N: Number of word occurrences in the corpus.

word n(word) p̃(word)

meet 2 2
15 ≈ 0.133

deadline 2 2
15 ≈ 0.133

single 1 1
15 ≈ 0.067

...

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching
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Relative frequency for conditional probabilities

p̃(x |y) =
n(x , y)

ny

Conditional probabilities can also be estimated from relative frequencies.

n(x , y) here is the number of common occurrences of the events x and y .

ny is the number of occurrences of the event y .

It applies: ny =
∑

x ′ n(x ′, y)
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Relative frequency for conditional probabilities
Random event x : Word occurrence is a certain word
Random event y : Word occurrence is in email of a certain category,
e.g. HAM or SPAM (HAM = “ no spam ”)
n(x , y): Number of word occurrences in emails of a category in the
corpus

word n(word, HAM) p̃(word|HAM) n(word, SPAM) p̃(word|SPAM)
meet
deadline
single
...

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching
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Relative frequency for conditional probabilities
Random event x : Word occurrence is a certain word
Random event y : Word occurrence is in email of a certain category,
e.g. HAM or SPAM (HAM = “ no spam ”)
n(x , y): Number of word occurrences in emails of a category in the
corpus

word n(word, HAM) p̃(word|HAM) n(word, SPAM) p̃(word|SPAM)

meet 1 1
9 ≈ 0.111 1 1

6 ≈ 0.167
deadline 2 2

9 ≈ 0.222 0 0
single 0 0 1 1

6 ≈ 0.167
...

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching
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Probability for word sequence

So far we have only expressed and estimated probabilities of single
words.

How can we calculate the probabilities of whole texts (e.g. emails)?

Application of conditional probability:

P(w1,w2, . . . ,wn)

= P(w1)P(w2|w1)P(w3|w1,w2) . . .P(wn|w1 . . .wn−1)

⇒ does not really solve the problem, because P(wn|w1 . . .wn−1) can
not be well estimated
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Independence assumption: Bag of Words

One solution: we make the statistical assumption that every word is
independent of the occurrence of other words.

This is also called bag-of-words (BOW) assumption, because the
order of words becomes irrelevant.

P(w1,w2, . . . ,wn)

= P(w1)P(w2|w1)P(w3|w1,w2) . . .P(wn|w1 . . .wn−1)

=
indep.

P(w1)P(w2)P(w3) . . .P(wn)
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Conditional independence

For many machine-learning algorithms, conditional independence is
the central concept:
If the value of a random variable y is known, random variables
x1, . . . , xn are independent

Middle ground between:
I no independence
I independence of all random variables

In our case:
P(w1,w2, . . . ,wn|SPAM)

=
cond. indep.

P(w1|SPAM)P(w2|SPAM)P(w3|SPAM) . . .P(wn|SPAM)
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Naive Bayes Classifier
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Task
Given a training corpus:

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching

Decide whether new (unseen) emails should be assigned to the
category HAM or SPAM:

hot
stock
for

SPAM?

HAM?
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Decision criterion

hot
stock
for

SPAM?

HAM?

Given the content of the email, which category is more likely: SPAM
or HAM?

P(HAM|text) > P(SPAM|text)

Why isn’t the decision criterion:

P(text|HAM) > P(text|SPAM)

?
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Bayes rule

P(HAM|text) =
P(text|HAM) ∗ P(HAM)

P(text)

P(text|HAM): conditional BOW probability

P(HAM): Prior probability that an email is assigned to the category
HAM (if the content of the email is not known). Estimation:

p̃(HAM) =
number of HAM-Mails

number of all Mails

P(text): BOW probability of the content of the email without
knowing the category.
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Decision criterion

Email is HAM

⇔

P(HAM|text) > P(SPAM|text)

⇔
P(HAM|text)

P(SPAM|text)
> 1

⇔

����1
P(text)P(text|HAM) ∗ P(HAM)

�
���1

P(text)P(text|SPAM) ∗ P(SPAM)
> 1

What is a decision rule for more than two categories?
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Decision criterion

Email is HAM

⇔

P(HAM|text) > P(SPAM|text)

⇔
P(HAM|text)

P(SPAM|text)
> 1

⇔

����1
P(text)P(text|HAM) ∗ P(HAM)

�
���1

P(text)P(text|SPAM) ∗ P(SPAM)
> 1

What is a decision rule for more than two categories?
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Example (preliminary)

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching

p̃(HAM) = 3
5

p̃(SPAM) = 2
5

p(hot stock for|HAM)

= p̃(hot|HAM)p̃(stock|HAM)p̃(for|HAM) = ...

p(hot stock for|SPAM)

= p̃(hot|SPAM)p̃(stock|SPAM)p̃(for|SPAM) = ...

...
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Example (preliminary)

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching

p̃(HAM) = 3
5

p̃(SPAM) = 2
5

p(hot stock for|HAM)

= p̃(hot|HAM)p̃(stock|HAM)p̃(for|HAM) =
0 · 0 · 1
9 · 9 · 9

= 0

p(hot stock for|SPAM)

= p̃(hot|SPAM)p(stock|SPAM)p̃(for|SPAM) =
2 · 1 · 0
6 · 6 · 6

= 0

Problem: Decision criterion is not defined ( 0
0 )
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Add-1 smoothing

Add-1 smooting (Laplace smoothing)

p̃(w) =
n(w) + 1

N + V

(V = number of possible words; N = number of tokens)

... is optimal if the uniform distribution is most likely is what is rarely the
case in text corpora ⇒ Zipf’s distribution

... therefore, overestimates the probability of unseen words.
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Add-λ smoothing

reduces the amount of smoothing

Add-λ smoothing

p̃(w) =
n(w) + λ

N + Vλ

Add-λ smoothing for conditional probabilities

p̃(w |y) =
n(w , y) + λ

ny + Vλ
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Example (with Add-1 smoothing)

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching

p̃(HAM) = 3
5 , p̃(SPAM) = 2

5

Vocabulary contains V = 10 different words

p(hot stock for|HAM) = p̃(hot|HAM)p̃(stock|HAM)p̃(for|HAM)

=
(0 + 1) · (0 + 1) · (1 + 1)

(9 + 10) · (9 + 10) · (9 + 10)
≈ 0.00029

p(hot stock for|SPAM) = p̃(hot|SPAM)p̃(stock|SPAM)p̃(for|SPAM)

=
(2 + 1) · (1 + 1) · (0 + 1)

(6 + 10) · (6 + 10) · (6 + 10)
≈ 0.00146

P(text|HAM)∗P(HAM)
P(text|SPAM)∗P(SPAM) = 0.00029·0.6

0.00146·0.4 ≈ 0.298 ⇒ Category?
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Example (with Add-1 smoothing)

hot
stock
tip

reminder
deadline
meet
thanks

meet
hot
single

thanks
for
tip

deadline
approaching

p̃(HAM) = 3
5 , p̃(SPAM) = 2

5

Vocabulary contains v = 10 different words

p(hot stock for|HAM) = p̃(hot|HAM)p̃(stock|HAM)p̃(for|HAM)

=
(0 + 1) · (0 + 1) · (1 + 1)

(9 + 10) · (9 + 10) · (9 + 10)
≈ 0.00029

p(hot stock for|SPAM) = p̃(hot|SPAM)p̃(stock|SPAM)p̃(for|SPAM)

=
(2 + 1) · (1 + 1) · (0 + 1)

(6 + 10) · (6 + 10) · (6 + 10)
≈ 0.00146

P(text|HAM)∗P(HAM)
P(text|SPAM)∗P(SPAM) = 0.00029·0.6

0.00146·0.4 ≈ 0.298 < 1 ⇒ Email is spam
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Calculating with logarithms

When multiplying many small probabilities (for example, all words in
a long text), the result can quickly approach 0 and may not be
represented correctly.

That’s why you always avoid the multiplication of probabilities.

Instead, use the sum of the logarithmized probabilities.

log(a · b · c · . . . ) = log(a) + log(b) + log(c) + . . .

Example:

0.0001 ∗ 0.001 ∗ 0.00001 ∗ 0.01 = 0.00000000000001

log10(0.0001∗0.001∗0.00001∗0.01) =

−4+(−3)+(−5)+(−2) = −14

log( a
b ) =?
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Calculating with logarithms

When multiplying many small probabilities (for example, all words in
a long text), the result can quickly approach 0 and may not be
represented correctly.

That’s why you always avoid the multiplication of probabilities.

Instead, use the sum of the logarithmized probabilities.

log(a · b · c · . . . ) = log(a) + log(b) + log(c) + . . .
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log10(0.0001∗0.001∗0.00001∗0.01) =−4+(−3)+(−5)+(−2) = −14

log( a
b ) =?

Benjamin Roth (Many thanks to Helmut Schmid for parts of the slides) (CIS)Classification with Naive Bayes 29 / 50



Decision rule with logarithms

The logarithm is increasing monotonically, i.e. we can apply it to inequalities
on both sides.

The decision rule is now:

P(HAM|text) > P(SPAM|text)

⇔
logP(HAM|text) > logP(SPAM|text)

⇔

logP(HAM|text)− logP(SPAM|text) > 0

⇔
logP(text|HAM) + logP(HAM)− logP(text|SPAM)− logP(SPAM) > 0

The quotient of the probabilities of two complementary events is also called
Odds.

The logarithm of this quotient is called Log-Odds.
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Decision rule with logarithms

The logarithm is increasing monotonically, i.e. we can apply it to inequalities
on both sides.

The decision rule is now:
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⇔
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The logarithm of this quotient is called Log-Odds.
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Naive Bayes with other distributions

Depending on the problem, the distribution P(X |category) can take
various forms.

In the case just discussed, the distribution is the multinomial
distribution (probability that with text of length n exactly the
observed numbers of words occur)

If the observed values are real values (e.g., values from a sensor), one
can e.g. use Gaussian Distributions.
⇒ Smoothing is also important for real-valued features (for example,
what variance should be assumed for a category with little data?)

For machine-learning software (such as Scikit-learn), you can choose
the type of distribution as a hyper parameter.
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Unknown words in the test data

It may be that words appear in the test data that did not occur in the
training data.

The possible values of the random variable were chosen based on the
training data, i.e. the probability of the new words is not defined.

Two common solutions:
I Words that do not occur in the training data are ignored (⇒ Test

documents are getting shorter)
I Words that are rarely in the training data (for example, 1-2 times) or

do not occur at all, (in training and testing) are replaced with a
placeholder <UNK>.

Advantages and disadvantages of the two methods?
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Implementation
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Training or test instance

In our case:

Features = words (tokens)

Label
I Binary classification: HAM (True) vs SPAM (False)
I Multi-Class Classification (Exercise Sheet): String for category("work",

"social", "promotions", "spam", ...)

class DataInstance:

def __init__(self, feature_counts, label):

self.feature_counts = feature_counts

self.label = label

#...

Benjamin Roth (Many thanks to Helmut Schmid for parts of the slides) (CIS)Classification with Naive Bayes 34 / 50



Training or test set

Amount of possible feature values is e.g. important for smoothing.

Sanity-check: What accuracy would result from predicting the most
common category?

Some learning algorithms require several training iterations between
which the training set should be re-permuted (mixed).

class Dataset:

def __init__(self, instance_list, feature_set):

self.instance_list = instance_list

self.feature_set = feature_set

def most_frequent_sense_accuracy(self):

# ...

def shuffle(self):

# ...
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Classifier

What information do we need to create the Naive-Bayes model?

...
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Classifier

What information do we need to create the Naive-Bayes model?

For the estimation of P(w |HAM) or P(w |SPAM)
I n(w ,HAM) or n(w ,SPAM):

One dictionary for each category, which maps each word to its
frequency in the respective category.

I nHAM or nSPAM :
The number of word occurrences per category
(can be summed up from the values of the dictionaries)

I For smoothing: Parameters λ and size of the vocabulary V

For the estimation of P(HAM) or P(SPAM)
I In each case the number of training emails per category.
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Classifier: constructor
def __init__(self, positive_word_to_count, negative_word_to_count,\

positive_counts, negative_counts, vocabsize, smoothing):

# n(word, HAM) and n(word, SPAM)

self.positive_word_to_count = positive_word_to_count

self.negative_word_to_count = negative_word_to_count

# n_HAM and n_SPAM

self.positive_total_wordcount = \

sum(positive_word_to_count.values())

self.negative_total_wordcount = \

sum(negative_word_to_count.values())

self.vocabsize = vocabsize

# P(HAM) and P(SPAM)

self.positive_prior = \

positive_counts / (positive_counts + negative_counts)

self.negative_prior = \

negative_counts / (positive_counts + negative_counts)

self.smoothing = smoothing
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Classifier: Overview

class NaiveBayesWithLaplaceClassifier:

def log_probability(self, word, is_positive_label):

# ...

def log_odds(self, feature_counts):

# ...

def prediction(self, feature_counts):

# ...

def prediction_accuracy(self, dataset):

# ...

def log_odds_for_word(self, word):

# ...

def features_for_class(self, is_positive_class, topn=10):

# ...
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Calculation of P(w |HAM) or P(w |SPAM)

Probability estimation...

... smoothed

... is returned logarithmized

def log_probability(self, word, is_positive_label):

if is_positive_label:

wordcount = self.positive_word_to_count.get(word, 0)

total = self.positive_total_wordcount

else:

wordcount = self.negative_word_to_count.get(word, 0)

total = self.negative_total_wordcount

return math.log(wordcount + self.smoothing) \

- math.log(total + self.smoothing * self.vocabsize)
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Calculation of Log-Odds

What is calculated in the two sums?

def log_odds(self, feature_counts):

# language model probability

pos_logprob = sum([ count * self.log_probability(word, True) \

for word, count in feature_counts.items()])

# prior probability

pos_logprob += math.log(self.positive_prior)

# same for negative case

neg_logprob = sum([ count * self.log_probability(word, False) \

for word, count in feature_counts.items()])

neg_logprob += math.log(self.negative_prior)

return pos_logprob - neg_logprob
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Applying the classifier, test accuracy

Prediction
I Apply the model to the feature counts of a test instance
I Prediction of a category (HAM/True or SPAM/False) according to the

decision rule

def prediction(self, feature_counts):

# ...

Calculation of test accuracy
I First, prediction for all instances of the dataset
I Then compare with the correct category label

def prediction_accuracy(self, dataset):

# ...
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Multi-class classification
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Multi-class classification

Extension: Classifier distinguishes n different categories(n ≥ 2)

⇒ Exercise sheet

Decision rule: choose category c∗, that maximizes probability
p(c∗|text).

c∗ = arg max
c

p(c |text)

arg maxx f (x) selects a value x (from the definition set) for which the
function value f (x) is maximal.

By applying the calculation rules, the conditional independence
assumption, and our estimation method (Laplace):

c∗ = arg max
c

p(c)p(text|c)

= arg max
c

log[p(c)] +
∑

w∈text
log[p̃(w |c)]
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Multi-class classification

Decision rule: choose category c∗, that maximizes probability
p(c∗|text).

c∗ = arg max
c

p(c |text)

Does the following implication apply?

c∗ = arg max
c

p(c |text)⇒ p(c∗|text)

1− p(c∗|text)
≥ 1

Does the following implication apply?

p(c∗|text)

1− p(c∗|text)
> 1⇒ c∗ = arg max

c
p(c |text)
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Multi-class classification

Does the following implication apply?

c∗ = arg max
c

p(c |text)⇒ p(c∗|text)

1− p(c∗|text)
≥ 1

No. For 3 or more categories, the most likely category may be WK
p(c∗|text) < 0.5 and the Odds are < 1.

Does the following implication apply?

p(c∗|text)

1− p(c∗|text)
> 1⇒ c∗ = arg max

c
p(c |text)

Yes. If the most likely category odds has > 1, the WK
p(c∗|text) > 0.5, and all other categories must have a smaller WK.
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Multi-classes Naive Bayes: Implementation

To calculate the values p̃(w |c), we need the word frequencies per
class n(w , c)
Solution: Dictionary
(str,str) → int

For the priors p(c) we need the number of instances per class:
str → int

and the vocabulary size and the smoothing parameter

class NaiveBayesClassifier:

def __init__(self, word_and_category_to_count, \

category_to_num_instances, vocabsize, smoothing):

# ...
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Log odds per word

⇒ Exercise sheet

The log odds for a category c can also be calculated for only one
word (instead of one whole document).

Begin with log p(c|w)
1−p(c|w) and apply the calculation rules

log
p(c |w)

1− p(c|w)
= ...

= log[p̃(w |c)] + log[p(c)]− log[
∑
c ′ 6=c

p̃(w |c ′)p(c ′)]

The log odds per word indicate how strongly a word indicates the
respective category

You can then sort all words based on their log odds, and get an idea
of what the model has learned (i.e., what’s important for the model)
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Train and evaluate a classifier

In order to train and evaluate a classifier, we need 3 datasets:

1 Training data: On this data, the model estimates its parameters
automatically (e.g., word probabilities and category priors).

2 Development data: On this data, various model architectures and
hyper-parameters1 can be compared.
What, for example in our case?

3 Test data: An estimate of how well the model works on further
unseen data can be obtained on this data, after the development
data finally determined a model architecture.

I Depending on the nature of the data (domain etc), this estimate can
deviate very much from reality.

I The estimate may also be very unreliable depending on the amount of
test data (⇒ significance tests).

I Why can’t we use the performance on the development data?

1Parameters that are not automatically learned.
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Summary

Probability calculation
I Theorem of Bayes
I Conditional independence

Naive Bayes classificator
I Decision rule, and “flip” the formula by using theorem of Bayes
I Smoothing the probabilities
I Log-Odds

Questions?
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