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Convolution and Pooling

Source: Computer science: The learning machines. Nature (2014).
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Convolution and Pooling

@ Convolution:

>

>

v vy

Sliding operator

Input: moving window over one instance.

Image/2D: patch (rectangle)

Text/sequence: subsequence

Preliminary output: Representation vector for each patch.

@ Pooling

>
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Operator to combine representations of all patches into vector of same

size.

Operates component-wise (across all patches)

Most popular: Average pooling, Max-pooling

Max pooling: only select maximum value for each dimension
“Feature detector”, “Cat neuron fires”

Why maximum works? Because it is trained that way.
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Convolution

@ Tensor sizes:

» Input 3D tensor (picture): colors (channels) X input size (x-,
y-direction)
= Channels in hidden layers: feature activations instead of colors.

» Weight 4D tensor:
number of convolutions (features/output channels) x number of input
channels x patch size (x-, y-direction)

@ The weight tensor is multiplied across all applicable patches, resulting
in an output 3D tensor of size: output channels x input size (x-,
y-direction) !

@ A non-linearity is typically applied on this output tensor before
pooling.

Lif fully padded and stride= 1
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Pooling

@ Note: Pooling is sometimes done only across a small number of
succeeding patches.

@ For example, to halve the size of the input image in each direction,
pool across groups of 2 x 2 = 4 input patches (or rather, across their
convolution outputs).
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@ Sometimes called “2x2 (downscale) stride”, “pool size / pooling
region of 2x2”
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Convolution and Pooling: LeNet

Inpuc layer (51) 4 feature maps
: {CI) 4 feature maps  (52) 6 feature maps (C2) 6 feature maps

| convolution layer 1 sub-sampling layer | convolution layer 1 sub-sampling layer 1 fully connecred MLPl

LeCun et al. (1998). Gradient-based learning applied to document recognition.
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Convolution and Pooling for NLP

convolution
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the sopranos was the best show
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Convolution and Pooling for NLP

In the previous example:
@ How many filters?
What is filter size (=filter width)?
What stride (=step size)?
What is padding size?
which values would be selected by max-pooling?
Where would non-linearity be applied?

How many parameters are to be learned?
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Convolution and Pooling for NLP
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Source: Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of ConvNets for Sentence Classification.
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Convolution and Pooling for NLP
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n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Source: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification.
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