
Homework 3:

Paraphrase Recognition;

Matrix Representations

Dr. Benjamin Roth

Computerlinguistische Anwendungen

Due: Wednesday, May 22, 2019, 14:00

In the �rst exercise, you will use the perceptron to implement a paraphrase classi�er

and design some features for that. In the second exercise, you will practice the use of

Numpy arrays and the Scikit-Learn CountVectorizer.

Exercise 1: Paraphrase Detection with the Perceptron

Download the paraphrases corpus (paraphrases.tgz ) from the course homepage. Have a

look at the training, development and test �les. They contain pairs of (tab-separated)

tweets and a label of the tweets being paraphrases, or not.

Take a look at the �le paraphrases.py. In this script, your existing perceptron imple-

mentation is used to solve the paraphrase detection task. To make it work, you need to

complete some functions, which you can verify with unittests:

python3 -m unittest -v hw03_paraphrases/test_paraphrases.py

Exercise 1.1: Token N-grams [2 Points]

Complete the function token_ngrams. Given a list of tokens, the function should return

a list of all ngrams (n consecutive tokens). Each ngram is a string, the concatenated

tokens, separated by whitespace (" ").

Attention: The function should not only work for 3-grams, instead the function should

use the parameter n as a generic number.

Exercise 1.2: Token Features [1 Points]

Complete the function token_features. Given two sets of tokens (without repetitions)

A and B, the following features should be added to a new dictionary:

• features[WORD_OVERLAP]: The number of tokens common to both sets (the inter-

section A ∩B)

1



• features[WORD_UNION]: The number of tokens in the union A ∪B

Then return the dictionary.

Exercise 1.3: Word Ngram Features [1 points]

Complete the function ngram_features. Given two sets of token ngrams, the following

features should be added to a new dictionary:

• features[WORD_NGRAM_OVERLAP]: The number of token 3-grams common to both

texts (the intersection of the sets).

• features[WORD_NGRAM_UNION]: The number of token 3-grams in the union of both

sets.

Then return the dictionary.

Exercise 1.4: Character Ngram Features [1 points]

Complete the function ngram_features. Given two sets of character ngrams, the follow-

ing features should be added to a new dictionary:

• features[CHARACTER_NGRAM_OVERLAP]: The number of character 3-grams common

to both texts (the intersection of the sets).

• features[CHARACTER_NGRAM_UNION]: The number of character 3-grams in the union

of both sets.

Then return the dictionary.

Exercise 1.5: Wordpair Features [1 points]

Complete the function wordpair_features. Given two sets of tokens, a feature for every

wordpair (u, v) should be added, where u appears in the �rst set of tokens, and v in the

second one. To represent each feature, use the symbol # as in�x between u and v. (For
example, there are 4 wordpair features for {'hello','greetings'} and {'hi','bye'}, one of

which is hello#bye). Return a dictionary that maps each wordpair feature (for the

given token sets) to the value 1.

Exercise 1.6: Feature Comparison [0 points]

This exercise is a small check whether your features work with the real data. Call the

script from the src-folder with:

python3 -m hw03_paraphrases.paraphrases -t data/paraphrases/train.txt \

-d data/paraphrases/dev.txt -e data/paraphrases/test.txt

and see how it performs. You might be interested in how much each of your features

contributed to this result. For that, a feature comparison mode was implemented! Simply

2



add the �ag -fc to the command above. This is also a great way to check if all of your

functions in the previous exercises on this sheet are working correctly. You should receive

something like this:

FEATURE COMPARISON MODE

−−−−−−−−−−−−−−−
Only wordpair f e a t u r e s

Dev acc : 0.6484789956542734

−−−−−−−−−−−−−−−
Only cha rac t e r ngram f e a t u r e s

Dev acc : 0.7349106711733462

−−−−−−−−−−−−−−−
Only word ngram f e a t u r e s

Dev acc : 0.6875905359729599

−−−−−−−−−−−−−−−
Only token f e a t u r e s

Dev acc : 0.739014968614196

. . .

Note that there are some non-deterministic parts in the code, so the scores may vary a

little bit! (You get points if your features work correctly with the dataset.)

Exercise 2: Numpy

Complete the following functions in small_functions.py. You can check your progress

using the doctests:

python3 -m doctest -v hw03_paraphrases/small_functions.py

and unittests:

python3 -m unittest -v hw03_paraphrases/test_small_functions.py

Exercise 2.1: Creating a 1d Numpy Array [4 points]

Complete the function square_roots(start,end,length), that returns a 1d (vector

shaped) numpy array with the speci�ed length. It should contain the square roots of

equally spaced input values between start and end (both included). Look at the doctest

for an example.

Exercise 2.2: Creating a 2d Numpy Array [4 points]

Complete the function odd_ones_squared(rows, cols), that returns a 2d numpy array

with shape (rows, cols). The matrix cells should contain increasing integer values

(create a range and reshape), where all odd numbers are squared. Look at the doctest

for an example.

3


