
Homework 4:

Classi�cation with Scikit-Learn

Dr. Benjamin Roth

Computerlinguistische Anwendungen

Due: Wednesday May 29, 2019, 14:00

In this homework you will learn something about the Python library 'scikit-learn' or
'sklearn', a well known and very useful toolbox for research areas like data analysis and
machine learning.

Exercise 1: CountVectorizer [4 points]

Complete the function trigram_quadragram_vectorizer(texts) that takes a list of text
strings, and returns a CountVectorizer that considers all trigrams and quadragrams that
occur in at least 3 of the given texts. Use the CountVectorizer defaults for preprocessing
of text (tokenization, lower-casing etc.). You can test your function with:
python3 -m unittest -v hw04_sklearn_paraphrases/test_small_functions.py

Exercise 2: Dict Vectorizer

In this exercise we will do some small experiments with sklearn's DictVectorizer. To
complete this exercise you will need the documentation: http://scikit-learn.org/

stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html

Exercise 2.1: Dict Vectorizer - Part 1 [4 points]

In Machine Learning in the context of NLP a common task is to e�ciently transform given
dictionaries of word counts to feature matrices, where each row stands for a dictionary
(e.g. a sentence) and each column for a word. Each position in the matrix denotes the
number of occurences of a word in a sentence. So given a large number of dictionaries,
one must:

• Derive the set of all words that occur in any sentence.

• Iterate over all dictionaries, count the word occurrences and �ll them into the
matrix.

1



This can easily be done with sklearn's DictVectorizer! In the �le sklearn_experiments.py
write a function make_matrix1 that performs these two things on a given list. The func-
tion should return a scipy.sparse matrix.
Call the function on list_of_dicts_1 and examine the result.
Note: Usually the sklearn DictVectorizer works with sparse matrices which is indispens-
able when working with large data. But to examine these toy matrices you might want to
convert the returned sparse matrix. You can also use our print_sparse_matrix function
to print it.

Exercise 2.2: Dict Vectorizer - Part 2 [4 points]

In applications, usually the training data is transformed to such a matrix. But it is
important to understand that if new sentences come in to be classi�ed, they must be
transformed to a matrix with the same number of columns as the training matrix! The
bag of words features are de�ned by the training data only!
Write a function make_matrix2(list_of_dicts_1, list_of_dicts_2) that uses sklearn's
DictVectorizer to do the following:

• Consider list_of_dicts_1 to be your 'training data' that de�nes the known words.

• Transform list_of_dicts_2 to a feature matrix with respect to the words seen in
list_of_dicts_1. (Count only words that have been seen in list_of_dicts_1).

The function should return a scipy.sparsematrix. Call the function on list_of_dicts_1
and list_of_dicts_2 and examine the result. The matrix should have the same shape
as the one from Ex 2.1.

To check if your code for exercise 2 works correctly, call the unittest:
python3 -m unittest -v hw04_sklearn_paraphrases/test_sklearn_experiments.py

Exercise 3: Paraphrase Detection

In this exercise we will use the tools provided by sklearn (including the DictVectorizer)
to again approach the paraphrase dectection task that you already know from last home-
work.

Exercise 3.1: From �les to feature matrices [4 points]

In the �le paraphrases_scikit.py complete the function paraphrases_to_dataset.
This function is analogical to the function from last exercise and should do the following
things:

• Given a �lename, all lines in the �le should be read and converted to a features-
dictionary just like in the last homework. (Code is already there).

2



• If no DictVectorizer is given, the function should create a new one and �t it with
the feature Dictionaries created before.

• The DictVectorizer should now be used to create a sparse feature matrix from the
feature dictionaries created before.

• The function returns the feature matrix, the extracted labels, and the vectorizer.

Exercise 3.2: Obtaining our matrices [4 points]

Complete the function readData. This function should use paraphrases_to_dataset to
create the following things:

• Training matrix train_X, training labels train_Y and a vectorizer based on the
training data.

• Development matrix dev_X and development labels dev_Y based on the previously
constructed vectorizer.

• Same for testing: test_X and test_Y

Exercise 3.3: Classifying [4 points]

With sklearn one can create a classi�er by a single line of code. In this example, we'll try
di�erent parameter settings for two types of classi�ers: logistic regression (=MaxEnt)
and Support Vector Machines.
The classi�ers work on the paraphrase detection task. The only thing missing is to

pass the training matrix and labels to the classi�er. Search http://scikit-learn.org/

stable/modules/generated/sklearn.linear_model.LogisticRegression.html for a
way to do that!

To check if your code for exercise 3 works correctly, call the unittest:
python3 -m unittest -v hw04_sklearn_paraphrases/test_paraphrases_scikit.py

To see if everything works right and to get some actual results, move into the src

folder and call:

python3 −m hw04_sklearn_paraphrases . pa raphra s e s_sc ik i t −t
data/ paraphrases / t r a i n . txt −d data/ paraphrases /dev . txt −e
data/ paraphrases / t e s t . txt

Update (4.5.2018):

In order for the script to work, you need to move the de�nition of intersection_size(i,k)

before the statement if __name__ == "__main__":
You should receive something like this:

C l a s s i f i e r : LinearSVC (C=0.1) − Development Accuracy : 0 .7190
C l a s s i f i e r : LinearSVC (C=1.0) − Development Accuracy : 0 .7190
C l a s s i f i e r : Log i s t i cReg r e s s i on (C=0.01 , penalty="l2 ") − Development Accuracy : 0 .7378
C l a s s i f i e r : Log i s t i cReg r e s s i on (C=0.1 , penalty="l2 ") − Development Accuracy : 0 .7255

3



C l a s s i f i e r : Log i s t i cReg r e s s i on (C=1.0 , penalty="l2 ") − Development Accuracy : 0 .7173
C l a s s i f i e r : Log i s t i cReg r e s s i on (C=0.01 , penalty="l1 ") − Development Accuracy : 0 .7405
C l a s s i f i e r : Log i s t i cReg r e s s i on (C=0.1 , penalty="l1 ") − Development Accuracy : 0 .7431
C l a s s i f i e r : Log i s t i cReg r e s s i on (C=1.0 , penalty="l1 ") − Development Accuracy : 0 .7088
Best c l a s s i f i e r : Log i s t i cReg r e s s i on (C=0.1 , penalty="l1 ") − Test Accuracy : 0 .8687

4


