
Recurrent Neural Networks

Benjamin Roth

Centrum für Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universität München

beroth@cis.uni-muenchen.de

Benjamin Roth (CIS) Recurrent Neural Networks 1 / 32



Recurrent Neural Networks: Motivation

How do you ...

... best represent a sequence of words as a vector?

... combine the learned word vectors effectively?

... retain the information relevant to a particular task (certain features
of particular words), suppress unessential aspects?

Benjamin Roth (CIS) Recurrent Neural Networks 2 / 32



Recurrent Neural Networks: Motivation
For short phrases: average vector could be one possibility

London Symphony Orchestra

+ += 1/3 ( )

⇒ employer?

For long phrases problematic.

+ += 1/18 (

The sopranos was probably the last best show to air in the 90’s. its sad that its over

+ + + + + + + + + + + + + + )

Any information about the order of words is lost.
There are no parameters that can already during combination
distinguish between important and unimportant information. (Only
the classifier can try this).
Benjamin Roth (CIS) Recurrent Neural Networks 3 / 32



Recurrent Neural Networks: Idea

Calculate for each position (“ time step ”) in the text a representation
that summarizes all essential information up to this position.

For a position t this representation is a vector h(t) (hidden
representation)

h(t) is calculated recursively from the word vector x (t) and the hidden
vector of the previous position:

h(t) = f (h(t−1), x (t))

the sopranos was the best show

h

x

Benjamin Roth (CIS) Recurrent Neural Networks 4 / 32



Recurrent Neural Networks

h(t) = f (h(t−1), x (t))

the sopranos was the best show

h

x

The hidden vector in the last time step h(n) can then be used for
classification (“ Sentiment of the sentence? ”)

The predecessor representation of the first time step uses the 0 vector
(containing only zeros).

Benjamin Roth (CIS) Recurrent Neural Networks 5 / 32



Recursive function f

h(t) = f (h(t−1), x (t))

The f function takes two vectors as input and outputs a vector.

The function f is in most cases a combination of:
I Vector matrix multiplication:
I and a non-linear function (e.g., logistic sigmoid) applied to all

components of the resulting vector.

h(t) = σ(W [h(t−1); x (t)] + b)

Usually a bias vector b is added, which is sometimes omitted for simplicity.

Benjamin Roth (CIS) Recurrent Neural Networks 6 / 32



Recursive function f

h(t) = f (h(t−1), x (t))

Vector matrix multiplication:
I Simplest form of mapping a vector onto a vector.
I First, the vectors h(t−1) (k components) and x (t) (m components) are

concatenated:
F Result [h(t−1); x (t)] has k +m components.

I Weight matrix W (size: k × (k + m))
F the same matrix for all time steps (weight sharing)
F is optimized when training the RNN.

Benjamin Roth (CIS) Recurrent Neural Networks 7 / 32



Recursive function f

h(t) = f (h(t−1), x (t)) = σ(W [h(t−1); x (t)] + b)

Non-linear function
I Examples: Sigmoid, Tanh (= scaled sigmoid, between −1 . . . 1),

Softmax, ReLu (=max(0, x))
I Applied to all components of the resulting vector.
I Necessary so that the network can compute interesting, non-linear

interactions, such as the effect of negation.

Benjamin Roth (CIS) Recurrent Neural Networks 8 / 32



Neural Networks: Terminology

Benjamin Roth (CIS) Recurrent Neural Networks 9 / 32



Layers

Conceptually, a neural network is
composed of several (layers).

Each layer is a function that takes a
vector (or matrix) as the input, and
outputs a vector (or matrix).

The size of the output does not have
to match the size of the input (also
vector ↔ matrix possible).

The output of the previous layer is the
input for the next layer.

Layer 1

Layer 2

Layer 3

Instance representation  / Input

Prediction / Output

Which layers are there in our example (prediction of sentiment with
RNN)?

Benjamin Roth (CIS) Recurrent Neural Networks 10 / 32



Layers predicting sentiment with (simple) RNN
Input: vector with word-ids
Layer 1 (Embedding): Lookup of word vectors for ids
(vector→matrix)
Layer 2 (RNN): Calculation of the sentence vector from word vectors
(matrix→vector)
Layer 3: Calculation of the probability for positive sentiment from the
sentence vector
(vector→Real number, represented as a vector with 1 element)

the sopranos was the best show

1 245 27 1 87 113

0.81

Outlined in red: inputs / outputs
Benjamin Roth (CIS) Recurrent Neural Networks 11 / 32



Prediction with RNN: Possible extensions (1)

A second RNN can process the sentence from right to left:
The two RNN representations are then concatenated.

the sopranos was the best show

1 245 27 1 87 113

0.93

Benjamin Roth (CIS) Recurrent Neural Networks 12 / 32



Prediction with RNN: Possible extensions (2)

Before the prediction, several Dense layers can be cascaded.
I A dense layer (also: fully connected layer) corresponds to a matrix

multiplication (+ bias) and application of a non-linearity
I A Dense layer “ translates ” vectors and combines information from the

previous layer.
I Usually, the prediction layer is a dense layer. (in the example:

translation into a vector of size 1, nonlinearity is the sigmoid function)

the sopranos was the best show

1 245 27 1 87 113

0.93

Benjamin Roth (CIS) Recurrent Neural Networks 13 / 32



Dense-Layer: illustration

y = σ(Wx + b)
I W uand b are parameters that have to be learned by the model
I The nonlinearity σ is applied element by element

ŷ = Wx + b

= +

y = σ(ŷ)

=

Note: In a simple RNN, the recursive function corresponds to a
dense layer!

Benjamin Roth (CIS) Recurrent Neural Networks 14 / 32



Frequently used nonlinearities
Logistic Sigmoid: yi = σ(xi )
Value range between 0 . . . 1, can
be interpreted as a probability.

Tanh:
yi = tanh(xi ) = 2σ(2xi )− 1
Like Logistic Sigmoid, but value
range between −1 . . . 1

ReLU (rectified linear unit):
yi = max(0, xi )

Softmax:
I

yi =
e(xi )∑
j e

(xj )

I Normalizes the output of the
preceding layers to a
probability distribution

I Mostly used in output layer
for prediction

Benjamin Roth (CIS) Recurrent Neural Networks 15 / 32



Note on learning the model parameters

A neural network is a function built from simple units, with one vector
as the input (e.g., word ids of a sentence), and another vector as the
output (e.g., probability for positive sentiment).
For a data set, a cost function can now be calculated, e.g. the
negative log likelihood:

I (negative log) probability that the model assigns to the annotated
labels of the data set.

I Sometimes also called cross-entropy.

The parameters can then be optimized (similar to Word2Vec) with
Stochastic Gradient Descent.

I Parameters are e.g. Word Embeddings, Weight Layers of Dense Layers,
... etc.

I Unlike Word2Vec, NN usually performs a parameter update on a
mini-batch of 10-500 training instances.

I Several extensions of SGD are available (RMS-Prop, Adagrad, Adam,
...)

Benjamin Roth (CIS) Recurrent Neural Networks 16 / 32



Neural Networks:
Implementation with Keras

Benjamin Roth (CIS) Recurrent Neural Networks 17 / 32



Introduction
What is Keras?

Neural Network library written in Python

Designed to be minimalistic & straight forward yet extensive

Built on top of TensorFlow

Keras strong points:

Easy to get started, powerful enough to build serious models

Takes a lot of work away from you.

Reasonable defaults (e.g. weight matrix initialization).

Little redundancy. Architectural details are inferred when possible
(e.g. input dimensions of intermediate layers, masking).

highly modular; easy to expand

Benjamin Roth (CIS) Recurrent Neural Networks 18 / 32



Keras: Idea
from keras.models import Sequential

from keras.layers import SomeLayer, OtherLayer

model = Sequential()

model.add(SomeLayer(...))

model.add(OtherLayer(...))

model.add(...)

model.compile(optimizer='sgd',

loss='binary_crossentropy',

metrics=['accuracy'])

model.fit(x_train, y_train)

Sequential() creates a model in which layers can be sequentially stacked
on each other.

I For each layer, the corresponding object is first created and added to
the model.

I The added layer take over the output of the previous layer as its input.

Benjamin Roth (CIS) Recurrent Neural Networks 19 / 32



Keras: Idea
from keras.models import Sequential

from keras.layers import SomeLayer, OtherLayer

model = Sequential()

model.add(SomeLayer(...))

model.add(OtherLayer(...))

model.add(...)

model.compile(optimizer='sgd',

loss='binary_crossentropy',

metrics=['accuracy'])

model.fit(x_train, y_train)

model.compile: When the specification of the model is completed, it can
be compiled:

I It is specified which learning algorithm should be used.
I Which cost function should be minimized.
I And what additional metrics should be calculated for evaluation.

model.fit: Training (adjust the parameters in all layers)

Benjamin Roth (CIS) Recurrent Neural Networks 20 / 32



Keras: Embedding Layer
from keras.layers import Embedding

...

model.add(Embedding(input_dim=10000, output_dim=50))

...

Provides word vectors of size output_dim for a vocabulary of size
input_dim.

I Often the first layer in a model.
I Input per instance: vector with word id’s
I Output per instance: matrix; sequence of word vectors.

The parameters (word vectors) of the embedding layer
I ... can be initialized with pre-trained vectors (Word2Vec), or at random.
I ... if you use pre-trained word vectors, further optimization of the word

vectors is sometimes not necessary.

from keras.layers import Embedding

...

model.add(Embedding(input_dim=10000, output_dim=50, \

weights=[word_vectors], trainable=False))

...

Benjamin Roth (CIS) Recurrent Neural Networks 21 / 32



?

Advantages / disadvantages of using pre-trained word vectors and not
optimizing them further?

Benjamin Roth (CIS) Recurrent Neural Networks 22 / 32



?

Advantages / disadvantages of using pre-trained word vectors and not
optimizing them further?

Advantage: For a specific task, such as Sentiment analysis, often
comparatively little training data is available. Word vectors can be
trained unsupervised on large corpora, these therefore have a better
coverage. In addition, the model has fewer parameters to optimize,
which is why there is less risk of overfitting.

Disadvantage: The word vectors used may not fit the task, the
relevant properties were not taken into account in the unsupervised
learning of the vectors ⇒ Underfitting

Note: A good middle ground is often to initialize the vectors with
pre-trained vectors, and still further optimize them on the
task-specific training data.

Benjamin Roth (CIS) Recurrent Neural Networks 23 / 32



Keras: RNN Layer
Although the previously introduced variant of the RNN is an
expressive model, the parameters are difficult to optimize (vanishing
gradient problem).
Extensions of the RNN, which facilitate the optimization of the
parameters, are e.g. LSTM (long short-term memory network) and
GRU (gated recurrent unit network)
from keras.layers import LSTM, Bidirectional

...

model.add(LSTM(units=100))

...

Two RNNs (left-to-right and right-to-left). output are the
concatenated end vectors (as in the example above):
model.add(Bidirectional(LSTM(units=100)))

Instead of the end vector, a matrix can also be output which contains
the state vector h for each position:
model.add(LSTM(units=100, return_sequences=True))

For which computer linguistic tasks is it necessary to have
access to the state vector at each position?

Benjamin Roth (CIS) Recurrent Neural Networks 24 / 32



Keras: RNN Layer

Instead of the end vector, a matrix can also be output which contains
the state vector h for each position: For which computer linguistic
tasks is it necessary to have access to the state vector at each
position?

Whenever a prediction needs to be made for each position, e.g. part of
speech tagging.

Benjamin Roth (CIS) Recurrent Neural Networks 25 / 32



Keras: Dense Layer
Two options:

As an intermediate layer
I Combines information from previous layers.
I Nonlinearity is ReLu or Tanh.

from keras.layers import Dense

...

model.add(Dense(100, activation='tanh'))

...

As output layer
I Probability of an output.
I Non-linearity is sigmoid (probability of output 1-vs-0) or softmax (any

number of classes, one-hot-encoding).

...

model.add(Dense(1, activation='sigmoid'))

...

Benjamin Roth (CIS) Recurrent Neural Networks 26 / 32



Training

model.compile(loss='binary_crossentropy', optimizer='adam',\

metrics=['accuracy'])

Loss functions:
I binary_crossentropy if only one class is predicted (sigmoid

activation)
I categorical_crossentropy if probability distribution over several

classes (Softmax activation)

Optimizer: adam, rmsprop, sgd

Benjamin Roth (CIS) Recurrent Neural Networks 27 / 32



Training

model.fit(...)

Other arguments:

Hyper-parameters
I batch_size: how many instances should be used for one optimization

step. (Optimization step 6= training iteration)
I epochs: How many training iterations should be performed.
I ...

validation_data: Tuple (features_dev, labels_dev)

Development data, e.g. to monitor training progress.

Benjamin Roth (CIS) Recurrent Neural Networks 28 / 32



Prediction and evaluation

y_predicted = model.predict(x_dev)

score, acc, ... = model.evaluate(x_dev, y_dev)

Returns the value of the objective function and the metrics (loss or
metrics of model.compile)

Benjamin Roth (CIS) Recurrent Neural Networks 29 / 32



Hints

In order to be productive with Keras, it is important to become
familiar with the API / Documentation!

https://keras.io/getting-started/sequential-model-guide/

Keras expects inputs as numpy arrays. Lists of various lengths (e.g.,
sentence representations) can be converted to a numpy array of a
given number of columns by the
pad_sequences(list_of_lists, max_length) command.
(Too long lists are truncated, shorter ones are filled with 0 values) 1

1Modul keras.preprocessing.sequence
Benjamin Roth (CIS) Recurrent Neural Networks 30 / 32

https://keras.io/getting-started/sequential-model-guide/


Convolutional Neural Networks

CNNs can be used just as easily as RNNs.

For example, to generate a CNN with 50 filters (output dimensions)
and filter width 3 words for sentiment prediction ...

... instead of the line model.add (LSTM (...)), a CNN with max
pooling must be used:

...

model.add(Conv1D(filters=50, kernel_size=3, \

activation='relu', padding='same'))

model.add(GlobalMaxPooling1D())

...

Benjamin Roth (CIS) Recurrent Neural Networks 31 / 32



Summary

RNNs: Creates a sequence of vectors (hidden states).

Each hidden vector is calculated recursively from the previous vector,
and the word-embedding of the current position.

A sequence may e.g. represented by the last hidden vector.

Benjamin Roth (CIS) Recurrent Neural Networks 32 / 32


