Benjamin Roth (CIS)

Recurrent Neural Networks

Benjamin Roth

Centrum fiir Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universitat Miinchen
beroth@cis.uni-muenchen.de

Recurrent Neural Networks

1/32

Recurrent Neural Networks: Motivation

How do you ...

@ ... best represent a sequence of words as a vector?
@ ... combine the learned word vectors effectively?

@ ... retain the information relevant to a particular task (certain features
of particular words), suppress unessential aspects?

Benjamin Roth (CIS) Recurrent Neural Networks 2/32

Recurrent Neural Networks: Motivation
For short phrases: average vector could be one possibility

London Symphony Orchestra
= employer?

For long phrases problematic.

The sopranos was probably the last best show to air in the 90’s. its sad that its over

@ Any information about the order of words is lost.
@ There are no parameters that can already during combination
distinguish between important and unimportant information. (Only

the classifier can try this).
Benjamin Roth (CIS) Recurrent Neural Networks 3/32

Recurrent Neural Networks: ldea

@ Calculate for each position (" time step ") in the text a representation
that summarizes all essential information up to this position.

@ For a position t this representation is a vector h(®) (hidden
representation)

o h() is calculated recursively from the word vector x(t) and the hidden
vector of the previous position:

h) = f(A(E=Y) | x(1))

the sopranos was the best show

Benjamin Roth (CIS) Recurrent Neural Networks 4 /32

Recurrent Neural Networks

0 — £(hD), x(0)

the sopranos was the best show

@ The hidden vector in the last time step h(" can then be used for
classification (“ Sentiment of the sentence? ")

@ The predecessor representation of the first time step uses the 0 vector
(containing only zeros).

Benjamin Roth (CIS) Recurrent Neural Networks 5/32

Recursive function f

h®) = f(A(E=1) x(®)

@ The f function takes two vectors as input and outputs a vector.

@ The function f is in most cases a combination of:

» Vector matrix multiplication:
» and a non-linear function (e.g., logistic sigmoid) applied to all
components of the resulting vector.

h® = o(W[h(ED: x(0] 4 b)

Usually a bias vector b is added, which is sometimes omitted for simplicity.

Benjamin Roth (CIS) Recurrent Neural Networks

6/ 32

Recursive function f

h = (R x(0)

@ Vector matrix multiplication:
» Simplest form of mapping a vector onto a vector.
> First, the vectors h(* 1) (k components) and x(*) (m components) are
concatenated:

* Result [A*~Y; x(] has k + m components.

» Weight matrix W (size: k x (k + m))
* the same matrix for all time steps (weight sharing)
* is optimized when training the RNN.

Benjamin Roth (CIS) Recurrent Neural Networks 7 /32

Recursive function f

h = £ xO) = o(W[RE); x(O] 1 b)

@ Non-linear function
» Examples: Sigmoid, Tanh (= scaled sigmoid, between —1...1),
Softmax, ReLu (=max(0, x))
» Applied to all components of the resulting vector.
> Necessary so that the network can compute interesting, non-linear
interactions, such as the effect of negation.

Benjamin Roth (CIS) Recurrent Neural Networks 8 /32

Neural Networks: Terminology

o = = E = 9acn

Benjamin Roth (CIS)

Layers

@ Conceptually, a neural network is

Prediction / Output
composed of several (/ayers). P

-+

@ Each layer is a function that takes a |
vector (or matrix) as the input, and
outputs a vector (or matrix).

La){er 3 ‘

I

\ Layer 2 |

@ The size of the output does not have
to match the size of the input (also
vector <+ matrix possible). \ Layer 1 |

I

@ The output of the previous layer is the

. Instance representation / Input
input for the next layer.

Which layers are there in our example (prediction of sentiment with
RNN)?

Benjamin Roth (CIS) Recurrent Neural Networks 10 / 32

Layers predicting sentiment with (simple) RNN

Input: vector with word-ids

Layer 1 (Embedding): Lookup of word vectors for ids
(vector—-matrix)

Layer 2 (RNN): Calculation of the sentence vector from word vectors

(matrix—vector)

Layer 3: Calculation of the probability for positive sentiment from the

sentence vector
(vector—Real number, represented as a vector with 1 element)

T

E_

_'

v @ o 0 o m

the sopranos was the best show

Benjamin Roth (CIS)

Outlined in red: inputs / outputs

Recurrent Neural Networks

11/ 32

Prediction with RNN: Possible extensions (1)

@ A second RNN can process the sentence from right to left:
The two RNN representations are then concatenated.

the sopranos was the best show

Benjamin Roth (CIS) Recurrent Neural Networks 12 / 32

Prediction with RNN: Possible extensions (2)

o Before the prediction, several Dense layers can be cascaded.

> A dense layer (also: fully connected layer) corresponds to a matrix
multiplication (4 bias) and application of a non-linearity

» A Dense layer “ translates " vectors and combines information from the
previous layer.

» Usually, the prediction layer is a dense layer. (in the example:
translation into a vector of size 1, nonlinearity is the sigmoid function)

the sopranos was the best show

Benjamin Roth (CIS) Recurrent Neural Networks 13 /32

Dense-Layer: illustration

o y=0(Wx+b)
» W uand b are parameters that have to be learned by the model
» The nonlinearity o is applied element by element

oy=Wx+b
E+

000
000
000

(009
I
000

A

a(y)
Note: In a simple RNN, the recursive function corresponds to a
dense layer!

Benjamin Roth (CIS) Recurrent Neural Networks 14 / 32

Frequently used nonlinearities

o Logistic Sigmoid: y; = o(x;) o RelU (rectified linear unit):
Value range between 0...1, can yi = max(0, x;)
be interpreted as a probability. f

09 : 1

1009 8 7 6 5 4 3 2 1 0 1 2 3 4 5 & 7 8 3 W

¢ Tanh: @ Softmax:
yi = tanh(x;) = 20(2x;) — 1 N
Like Logistic Sigmoid, but value e(x)
range between —1...1 Yi = >, et)

————————— » Normalizes the output of the
preceding layers to a
x probability distribution
» Mostly used in output layer
for prediction

Benjamin Roth (CIS) Recurrent Neural Networks 15 / 32

Note on learning the model parameters

@ A neural network is a function built from simple units, with one vector
as the input (e.g., word ids of a sentence), and another vector as the
output (e.g., probability for positive sentiment).

o For a data set, a cost function can now be calculated, e.g. the
negative log likelihood:

» (negative log) probability that the model assigns to the annotated
labels of the data set.
» Sometimes also called cross-entropy.
@ The parameters can then be optimized (similar to Word2Vec) with
Stochastic Gradient Descent.
> Parameters are e.g. Word Embeddings, Weight Layers of Dense Layers,
... etc.
» Unlike Word2Vec, NN usually performs a parameter update on a
mini-batch of 10-500 training instances.
» Several extensions of SGD are available (RMS-Prop, Adagrad, Adam,
)

Benjamin Roth (CIS) Recurrent Neural Networks 16 / 32

Neural Networks:
Implementation with Keras

Benjamin Roth (CIS)

Introduction
What is Keras?

@ Neural Network library written in Python
@ Designed to be minimalistic & straight forward yet extensive

@ Built on top of TensorFlow
Keras strong points:

o Easy to get started, powerful enough to build serious models
@ Takes a lot of work away from you.

o Reasonable defaults (e.g. weight matrix initialization).

°

Little redundancy. Architectural details are inferred when possible
(e.g. input dimensions of intermediate layers, masking).

highly modular; easy to expand

Benjamin Roth (CIS) Recurrent Neural Networks 18 / 32

Keras: |dea

from keras.models import Sequential

from keras.layers import SomeLayer, OtherLayer

model = Sequential()

model.add(SomeLayer(...))

model.add(OtherLayer(...))

model.add(...)

model . compile (optimizer="'sgd',
loss='binary_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train)

@ Sequential() creates a model in which layers can be sequentially stacked
on each other.

» For each layer, the corresponding object is first created and added to
the model.
» The added layer take over the output of the previous layer as its input.

Benjamin Roth (CIS) Recurrent Neural Networks 19 / 32

Keras: |dea

from keras.models import Sequential

from keras.layers import SomeLayer, OtherLayer

model = Sequential()

model.add(SomeLayer(...))

model.add (OtherLayer(...))

model.add(...)

model.compile(optimizer="'sgd',
loss='binary_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train)

@ model.compile: When the specification of the model is completed, it can
be compiled:

» It is specified which learning algorithm should be used.
» Which cost function should be minimized.
» And what additional metrics should be calculated for evaluation.

@ model.fit: Training (adjust the parameters in all layers)

Benjamin Roth (CIS) Recurrent Neural Networks 20 / 32

Keras: Embedding Layer

from keras.layers import Embedding

model . add (Embedding (input_dim=10000, output_dim=50))

@ Provides word vectors of size output_dim for a vocabulary of size
input_dim.
» Often the first layer in a model.
> Input per instance: vector with word id's
» Qutput per instance: matrix; sequence of word vectors.
@ The parameters (word vectors) of the embedding layer
» ... can be initialized with pre-trained vectors (Word2Vec), or at random.
> ... if you use pre-trained word vectors, further optimization of the word
vectors is sometimes not necessary.

from keras.layers import Embedding

model.add (Embedding (input_dim=10000, output_dim=50, \
weights=[word_vectors], trainable=False))

Benjamin Roth (CIS) Recurrent Neural Networks 21 /32

e Advantages / disadvantages of using pre-trained word vectors and not
optimizing them further?

Benjamin Roth (CIS) Recurrent Neural Networks 22 /32

e Advantages / disadvantages of using pre-trained word vectors and not
optimizing them further?

o Advantage: For a specific task, such as Sentiment analysis, often
comparatively little training data is available. Word vectors can be
trained unsupervised on large corpora, these therefore have a better
coverage. In addition, the model has fewer parameters to optimize,
which is why there is less risk of overfitting.

o Disadvantage: The word vectors used may not fit the task, the
relevant properties were not taken into account in the unsupervised
learning of the vectors = Underfitting

@ Note: A good middle ground is often to initialize the vectors with
pre-trained vectors, and still further optimize them on the
task-specific training data.

Benjamin Roth (CIS) Recurrent Neural Networks 23 /32

Keras: RNN Layer

@ Although the previously introduced variant of the RNN is an
expressive model, the parameters are difficult to optimize (vanishing
gradient problem).

@ Extensions of the RNN, which facilitate the optimization of the
parameters, are e.g. LSTM (long short-term memory network) and

GRU (gated recurrent unit network)
from keras.layers import LSTM, Bidirectional

model .add (LSTM(units=100))

o Two RNNs (left-to-right and right-to-left). output are the

concatenated end vectors (as in the example above):
model.add(Bidirectional (LSTM(units=100)))

@ Instead of the end vector, a matrix can also be output which contains

the state vector h for each position:
model.add (LSTM(units=100, return_sequences=True))

For which computer linguistic tasks is it necessary to have
access to the state vector at each position?

Benjamin Roth (CIS) Recurrent Neural Networks 24 /32

Keras: RNN Layer

@ Instead of the end vector, a matrix can also be output which contains
the state vector h for each position: For which computer linguistic
tasks is it necessary to have access to the state vector at each

position?

Whenever a prediction needs to be made for each position, e.g. part of

speech tagging.

Benjamin Roth (CIS) Recurrent Neural Networks 25 /32

Keras: Dense Layer
Two options:
@ As an intermediate layer

» Combines information from previous layers.
> Nonlinearity is ReLu or Tanh.

from keras.layers import Dense

model.add(Dense (100, activation='tanh'))

@ As output layer

» Probability of an output.
» Non-linearity is sigmoid (probability of output 1-vs-0) or softmax (any
number of classes, one-hot-encoding).

model .add (Dense (1, activation='sigmoid'))

Benjamin Roth (CIS) Recurrent Neural Networks 26 / 32

Training

model.compile(loss='binary_crossentropy', optimizer='adam',\
metrics=['accuracy'])

@ Loss functions:

» binary_crossentropy if only one class is predicted (sigmoid
activation)

» categorical_crossentropy if probability distribution over several
classes (Softmax activation)

o Optimizer: adam, rmsprop, sgd

Benjamin Roth (CIS) Recurrent Neural Networks 27 / 32

Training

model.fit(...)
Other arguments:

@ Hyper-parameters
» batch_size: how many instances should be used for one optimization
step. (Optimization step # training iteration)
» epochs: How many training iterations should be performed.
> .
@ validation_data: Tuple (features_dev, labels_dev)
Development data, e.g. to monitor training progress.

Benjamin Roth (CIS) Recurrent Neural Networks 28 / 32

Prediction and evaluation

@ y_predicted = model.predict(x_dev)

@ score, acc, ... = model.evaluate(x_dev, y_dev)

Returns the value of the objective function and the metrics (Loss or
metrics of model.compile)

Benjamin Roth (CIS) Recurrent Neural Networks

29 / 32

Hints

@ In order to be productive with Keras, it is important to become
familiar with the APl / Documentation!

@ https://keras.io/getting-started/sequential-model-guide/

o Keras expects inputs as numpy arrays. Lists of various lengths (e.g.,
sentence representations) can be converted to a numpy array of a
given number of columns by the
pad_sequences(list_of_lists, max_length) command.

(Too long lists are truncated, shorter ones are filled with 0 values) *

!Modul keras.preprocessing.sequence
Benjamin Roth (CIS) Recurrent Neural Networks 30/ 32

https://keras.io/getting-started/sequential-model-guide/

Convolutional Neural Networks

@ CNNs can be used just as easily as RNNs.

@ For example, to generate a CNN with 50 filters (output dimensions)
and filter width 3 words for sentiment prediction ...

@ ... instead of the line model.add (LSTM (...)), a CNN with max
pooling must be used:

model.add(ConviD(filters=50, kernel_size=3, \

activation='relu', padding='same'))
model . add (GlobalMaxPoolingl1D())

Benjamin Roth (CIS) Recurrent Neural Networks 31/32

Summary

@ RNNs: Creates a sequence of vectors (hidden states).

@ Each hidden vector is calculated recursively from the previous vector,
and the word-embedding of the current position.

@ A sequence may e.g. represented by the last hidden vector.

Benjamin Roth (CIS) Recurrent Neural Networks 32 /32

