
Word similarity: Practical implementation

Benjamin Roth

Centrum für Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universität München

beroth@cis.uni-muenchen.de

Benjamin Roth (CIS) Word similarity: Practical implementation 1 / 16



Word similarity model

demo

Benjamin Roth (CIS) Word similarity: Practical implementation 2 / 16



Word similarity model: steps

What steps are necessary to implement a word similarity model?

(That is, to return the most similar words to a query word, based on a
corpus)

Benjamin Roth (CIS) Word similarity: Practical implementation 3 / 16



Word similarity model: steps

preprocessing (tokenization, ...)

define vocabulary, assignment of word ⇒ number (identifier)

count co-occurrences of words

create co-occurrences matrix X . Row: (target) word, column:
(context) word. Value: frequency of occurring together in the same
context.

weighting of the matrix.
Positive pointwise mutual information (PPMI): Measures how much
co-occurrence deviates from statistically expected frequency.

Benjamin Roth (CIS) Word similarity: Practical implementation 4 / 16



Word similarity model: steps

singular value decomposition (SVD):
I The matrix is decomposed into a product of three matrices:

X = UΣV T

I Σ is a diagonal matrix, with non negative values, sorted descending
order. Magnitude of a value ⇔ importance for the reconstruction of X .

I U: Matrix. Row: word, column: context representation.
The columns contain the context information, compressed and sorted
by importance!

I V : Matrix. Context representation, optimized analogously.

calculate similarity
I Vector for request word: corresponding line in UΣ.
I Calculate cosine similarity with vectors for all other words (i.e., with all

words in UΣ).
I Why not just use U?

Benjamin Roth (CIS) Word similarity: Practical implementation 5 / 16



Singular value decomposition: recap

Benjamin Roth (CIS) Word similarity: Practical implementation 6 / 16



Singular value decomposition in Python: “naive” approach

idea of SVD:
I Consider only the n (e.g., 50) most important singular vectors.
I ⇒ Statistical “noise” is removed by ignoring other dimensions.
I ⇒ better similarity comparison, fewer outliers.

import numpy as np

U, sigma, V = np.linalg.svd(X)

U_trunc = U[:,:n]

sigma_trunc = sigma[:n]

V_trunc = V[:,:n]

⇒ Problem of the above approach?

Benjamin Roth (CIS) Word similarity: Practical implementation 7 / 16



Singular value decomposition in Python: “naive” approach

import numpy as np

U, sigma, V = np.linalg.svd(X)

U_trunc = U[:,:n]

sigma_trunc = sigma[:n]

V_trunc = V[:,:n]

⇒ Problem of the above approach?
The co-occurrence matrix is sparse (99% or more of the entries are 0).
The matrices U and V are dense, so their calculation will require a factor
of 100 (or more) more space. The truncated matrices are again very small
because only a fraction of the columns are retained; the calculation of the
intermediate step is often not possible due to space limitations.

Benjamin Roth (CIS) Word similarity: Practical implementation 8 / 16



Singular value decomposition in Python: efficient approach

There are special methods that compute only the n largest singular
values and the associated vectors. (Or directly the truncated matrix
UΣ, which is of interest.)

These methods are also optimized for the calculation of sparse
matrices.

For our purposes: sklearn.decomposition.TruncatedSVD

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=n)

U_sigma_trunc = svd.fit_transform(X)

Benjamin Roth (CIS) Word similarity: Practical implementation 9 / 16



Most similar words: “Naive” approach

1 Lookup of vector for request word: Row in X or U_sigma_trunc,
depending on whether the co-occurrence information is to be used
with or without SVD.

2 Iterate over all words w in the vocabulary.
1 Lookup vector for w.
2 Calculate cosine similarity and append to list along with w.

3 Sort list by similarity.

Benjamin Roth (CIS) Word similarity: Practical implementation 10 / 16



Most similar words: “Naive” approach
class DenseSimilarityMatrix:

def __init__(self, U_sigma_matrix, word_to_id):

self.word_matrix = U_sigma_matrix

self.word_to_id = word_to_id

self.id_to_word = {w:i for i,w in self.word_to_id.items()}

def most_similar_words(self, query, n):

q_row = self.word_to_id[query]

q_vec = self.word_matrix[q_row,:]

dot_q_q = q_vec.dot(q_vec.T)

sims_words = []

for w in self.word_to_id:

w_row = self.word_to_id[w]

w_vec = self.word_matrix[w_row,:]

dot_w_w = w_vec.dot(w_vec.T)

dot_q_w = q_vec.dot(w_vec.T)

sim = dot_q_w / math.sqrt(dot_q_q * dot_w_w)

sims_words.append((sim, w))

return [w for s,w in sorted(sims_words, reverse=True)[:n]]

Benjamin Roth (CIS) Word similarity: Practical implementation 11 / 16



Most similar words: “Naive” approach

Problem with above approach?

From a theoretical point of view, not much to object.

Nevertheless extremely inefficient in practice (factor > 10-100):
I Create single objects for each vector.
I Expand the list.
I Cosine calculation separately for each vector.

⇒ Matrix multiplication is one of the most optimized operations in
mathematical program libraries.

⇒ Whenever possible, you should multiply matrices as a whole!

Benjamin Roth (CIS) Word similarity: Practical implementation 12 / 16



Most similar words: Efficient approach

Avoid lookup of vectors for single words in vocabulary.

For cosine calculation we need:
I Dot product of all word vectors with query vector:

⇒ Efficient Operation: multiplication of matrix with vector!
I Dot product query vector (one time operation).
I Dot product of all word vectors (with themselves).

⇒ efficient operation:
F Component-wise multiplication of the matrix with itself.
F Sum of the result.
F Example: Whiteboard.

I component-wise application of root and fractional calculation.

Benjamin Roth (CIS) Word similarity: Practical implementation 13 / 16



Most similar words: Efficient approach
(for numpy dense arrays)

def most_similar_words(self, word, topn):

row = self.word_to_id[word]

vec = self.word_matrix[row,:]

m = self.word_matrix

dot_m_v = m.dot(vec.T) # vector

dot_m_m = np.sum(m * m, axis=1) # vector

dot_v_v = vec.dot(vec.T) # float

sims = dot_m_v / (math.sqrt(dot_v_v) * np.sqrt(dot_m_m))

return [self.id_to_word[id] for id in (-sims).argsort()[:topn]]

For Scipy sparse matrices, the syntax is a bit different.

Hint: vec is a row vector, vec.T gives the corresponding column
vector. (Dot product is defined for row and column vectors)

Benjamin Roth (CIS) Word similarity: Practical implementation 14 / 16



Most similar words: Efficient approach

v.argsort() returns the indices of the sorted entries of a vector:

>>> v=np.array([5,1,1,4])

>>> v.argsort()

array([1, 2, 3, 0])

Benjamin Roth (CIS) Word similarity: Practical implementation 15 / 16



Summary

Singular value decomposition (SVD)
I Recap
I Application on co-occurrence matrices
I Efficient calculation of the truncated SVD

Similarity calculation with matrix multiplication

Benjamin Roth (CIS) Word similarity: Practical implementation 16 / 16


