Word similarity: Practical implementation

Benjamin Roth

Centrum fiir Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universitdt Miinchen
beroth@cis.uni-muenchen.de

Benjamin Roth (CIS) Word similarity: Practical implementation 1/16



Word similarity model

demo

Benjamin Roth (CIS) Word similarity: Practical implementation



Word similarity model: steps

@ What steps are necessary to implement a word similarity model?

o (That is, to return the most similar words to a query word, based on a
corpus)

Benjamin Roth (CIS) Word similarity: Practical implementation 3/16



Word similarity model: steps

preprocessing (tokenization, ...)
define vocabulary, assignment of word = number (identifier)
count co-occurrences of words

create co-occurrences matrix X. Row: (target) word, column:
(context) word. Value: frequency of occurring together in the same
context.

weighting of the matrix.

Positive pointwise mutual information (PPMI): Measures how much
co-occurrence deviates from statistically expected frequency.

Benjamin Roth (CIS) Word similarity: Practical implementation 4/16



Word similarity model: steps

@ singular value decomposition (SVD):
» The matrix is decomposed into a product of three matrices:

X=Uzv’

» ¥ is a diagonal matrix, with non negative values, sorted descending
order. Magnitude of a value < importance for the reconstruction of X.
» U: Matrix. Row: word, column: context representation.
The columns contain the context information, compressed and sorted
by importance!
» V: Matrix. Context representation, optimized analogously.
@ calculate similarity

» Vector for request word: corresponding line in UX.

» Calculate cosine similarity with vectors for all other words (i.e., with all
words in UXL).

» Why not just use U?

Benjamin Roth (CIS) Word similarity: Practical implementation 5/ 16



Singular value decomposition: recap

Benjamin Roth (CIS) Word similarity: Practical implementation



Singular value decomposition in Python: “naive” approach

@ idea of SVD:
» Consider only the n (e.g., 50) most important singular vectors.
» = Statistical “noise” is removed by ignoring other dimensions.
» = better similarity comparison, fewer outliers.

import numpy as np

U, sigma, V = np.linalg.svd(X)
U_trunc = U[:, :n]

sigma_trunc = sigmal:n]
V_trunc = V[:,:n]

= Problem of the above approach?

7/16

Benjamin Roth (CIS) Word similarity: Practical implementation



Singular value decomposition in Python: “naive” approach

import numpy as np

U, sigma, V = np.linalg.svd(X)
U_trunc = U[:, :n]

sigma_trunc = sigmal:n]
V_trunc = V[:,:n]

= Problem of the above approach?

The co-occurrence matrix is sparse (99% or more of the entries are 0).
The matrices U and V' are dense, so their calculation will require a factor
of 100 (or more) more space. The truncated matrices are again very small
because only a fraction of the columns are retained; the calculation of the
intermediate step is often not possible due to space limitations.

Benjamin Roth (CIS) Word similarity: Practical implementation 8 /16



Singular value decomposition in Python: efficient approach

@ There are special methods that compute only the n largest singular
values and the associated vectors. (Or directly the truncated matrix
UX, which is of interest.)

@ These methods are also optimized for the calculation of sparse
matrices.

@ For our purposes: sklearn.decomposition.TruncatedSVD

from sklearn.decomposition import TruncatedSVD

svd = TruncatedSVD(n_components=n)
U_sigma_trunc = svd.fit_transform(X)

Benjamin Roth (CIS) Word similarity: Practical implementation 9 /16



Most similar words: “Naive” approach

@ Lookup of vector for request word: Row in X or U_sigma_trunc,
depending on whether the co-occurrence information is to be used
with or without SVD.

@ Iterate over all words w in the vocabulary.

@ Lookup vector for w.
@ Calculate cosine similarity and append to list along with w.

© Sort list by similarity.

Benjamin Roth (CIS) Word similarity: Practical implementation

10 / 16



Most similar words: “Naive” approach

class DenseSimilarityMatrix:
def __init__(self, U_sigma_matrix, word_to_id):
self .word_matrix = U_sigma_matrix
self.word_to_id = word_to_id
self.id_to_word = {w:i for i,w in self.word_to_id.items()}

def most_similar_words(self, query, n):

g_row = self.word_to_id[query]

g_vec = self.word_matrix[q_row,:]

dot_qg_q = q_vec.dot(q_vec.T)

sims_words = []

for w in self.word_to_id:
w_row = self.word_to_id[w]
w_vec = self.word_matrix[w_row,:]
dot_w_w = w_vec.dot(w_vec.T)
dot_q_w = q_vec.dot(w_vec.T)
sim = dot_q_w / math.sqrt(dot_q_q * dot_w_w)
sims_words.append((sim, w))

return [w for s,w in sorted(sims_words, reverse=True) [:n]]

Benjamin Roth (CIS) Word similarity: Practical implementation 11 /16



Most similar words: “Naive” approach

Problem with above approach?

From a theoretical point of view, not much to object.

Nevertheless extremely inefficient in practice (factor > 10-100):

» Create single objects for each vector.
» Expand the list.
» Cosine calculation separately for each vector.

@ = Matrix multiplication is one of the most optimized operations in
mathematical program libraries.

@ = Whenever possible, you should multiply matrices as a whole!

Benjamin Roth (CIS) Word similarity: Practical implementation 12 /16



Most similar words: Efficient approach

@ Avoid lookup of vectors for single words in vocabulary.
@ For cosine calculation we need:
» Dot product of all word vectors with query vector:
= Efficient Operation: multiplication of matrix with vector!
» Dot product query vector (one time operation).
» Dot product of all word vectors (with themselves).
= efficient operation:
* Component-wise multiplication of the matrix with itself.

* Sum of the result.
* Example: Whiteboard.

» component-wise application of root and fractional calculation.

Benjamin Roth (CIS) Word similarity: Practical implementation

13/ 16



Most similar words: Efficient approach
(for numpy dense arrays)

def most_similar_words(self, word, topn):
row = self.word_to_id[word]
vec = self.word_matrix[row,:]
m = self.word_matrix
dot_m_v = m.dot(vec.T) # wector
dot_m_m = np.sum(m * m, axis=1) # wvector
dot_v_v = vec.dot(vec.T) # float
sims = dot_m_v / (math.sqrt(dot_v_v) * np.sqrt(dot_m_m))
return [self.id_to_word[id] for id in (-sims).argsort() [:topn]]

@ For Scipy sparse matrices, the syntax is a bit different.

@ Hint: vec is a row vector, vec.T gives the corresponding column
vector. (Dot product is defined for row and column vectors)

Benjamin Roth (CIS) Word similarity: Practical implementation 14 / 16



Most similar words: Efficient approach

e v.argsort() returns the indices of the sorted entries of a vector:
>>> v=np.array([5,1,1,4])
>>> v.argsort()
array([1, 2, 3, 01)

Benjamin Roth (CIS) Word similarity: Practical implementation 15 / 16



Summary

@ Singular value decomposition (SVD)

» Recap
» Application on co-occurrence matrices
» Efficient calculation of the truncated SVD

@ Similarity calculation with matrix multiplication

Benjamin Roth (CIS) Word similarity: Practical implementation 16 / 16



