Applications of word vectors

Benjamin Roth

Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München beroth@cis.uni-muenchen.de

word vectors

- "Word vectors":
 - Sparse:
 - from PPMI-weighted co-occurrence matrix
 - ★ TF-IDF weighted term document matrix
 - Dense:
 - * by singular value decomposition of the PPMI (or TF-IDF) matrix
 - * through gradient-based machine learning (Word2Vec, GloVe, ...)

• What are the advantages and use cases of word vectors?

Advantage: Universal features

- Word vectors represent all words in the same feature space.
- These features can be used to predict word properties, and be weighted by a classifier depending with respect to a task.
- Examples:
 - Word types/ POS
 - Named entity types (person, location, organization, ...)
 - Fine-grained noun-typing (software, award, politician, food, ...)
 - word sentiment ("great" vs. "lame")
 - ▶ ...

Benefits of Dense Representations: Generalization

- Dense Representations: 50-1000 dimensions (SVD, Word2Vec, Glove, ...)
- Indirect Similarity: Because the model must compress the co-occurrence information, words are similarly represented which in turn co-occur with *similar* (but not necessarily the same) words.
 ⇒ Better generalization
- If only a few (50-1000) features are used, there is less risk of *overfitting* a classifier (compared to using sparse PPMI vectors)

Advantage: Unsupervised

- For estimating word vectors you do not need any annotations, a sufficient amount of text (for example Wikipedia) is enough.
- Classifiers can then be trained with very little annotated data, using the previously obtained word vectors.

Example: Word sentiment

Wort	Vektor	Label
absurd	[-0.4, 0.2,0.2,]	NEG
accurate	[-0.1,-1.2,0.1,]	POS
proper	[0.2,-0.1,0.2,]	POS
racist	[-0.5, 0.5,0.1,]	NEG

Simple use case:

. . .

- The classifier can be trained on an annotated sentiment lexicon, and then predict the polarity for new words (i.e., the original lexicon is extended).
- The extended lexicon could then be used to determine the sentiment of texts (ratio of positive vs. negative words).
- Note: The information from the word vectors can be exploited even more effectively with neural networks.
- In the example: To which features would the classifier assign **positive** feature weights, to which features **negative** weights, where would the weight be **neutral** (approximately 0)?

Example: Word sentiment

Wort	Vektor	Label
absurd	[-0.4, 0.2,0.2,]	NEG
accurate	[-0.1,-1.2, 0.1,]	POS
proper	[0.2,-0.1, 0.2,]	POS
racist	[-0.5, 0.5,0.1,]	NEG

• In the example: What features would the classifier assign **positive** feature weights, which **negative** ones, where would the weight be **neutral** (approximately 0)?

. . .

Example 2: Type prediction

Word / noun phrase Schleswig-Holstein London Symphony Orchestra Clint Eastwood

Types

location, administrative division award winner, artist, employer award winner, actor, producer, director, artist

- Given a noun phrase, predict the possible types of the described entity.
- Use cases?

. . .

Example 2: Type prediction

Word / noun phrase

Schleswig-Holstein London Symphony Orchestra Clint Eastwood

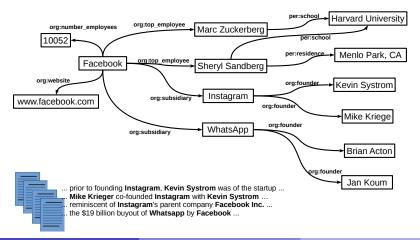
Typen

location, administrative area award winner, artist, employer award winner, actor, producer, director, artist

- Given a noun phrase, predict the possible types of the described entity.
- Use cases?
 - Question Answering: Which administrative area does Kiel belong to? What actors starred in Gran Torino?
 - Knowledge Graph Construction: Find all possible entities in a large amount of text, in a first step predict their types, and in a second step, what relations exist between them.

Knowledge Graph Construction

- I Find all possible entities in a large amount of text
- Predict their types
- Sind relations between them (depending on the types)



Benjamin Roth (CIS)

Example 2: Type prediction

Wort/Nomen-Phrase

. . .

Schleswig-Holstein London Symphony Orchestra Clint Eastwood

Typen

location, administrative area award winner, artist, employer award winner, actor, producer, director, artist

• Differences to word polarity:

- Instance may consist of several words, not just one.
- Instance can have multiple types, not just a real label.
- Possible solutions?

Example 2: Type prediction

- Differences to word polarity:
 - Instance may consist of several words, not just one.
 - ★ Option 1: Train with single words and combine the vectors after training. (Average vector, Neural network).
 - ★ Option 2: Combine entity phrases into pseudo-words before training (Clint_Eastwood)¹.

Phrases can be found through a tagger, or through co-occurrence (PPMI). Advantage: Vector exactly for this phrase. Disadvantage: Not compositional. One needs to know phrases before training or there is a coverage problem.

Instance can have multiple types, not just a real label.

 \Rightarrow Solution: Prediction for each type (multi-label classification). Each type is encoded in a label vector elsewhere.

¹Mikolov et al. (2013): Distributed Representations of Words and Phrases and their Compositionality

Benjamin Roth (CIS)

Practical information

Practical information

- Efficient implementations of Word2Vec, for example: https://radimrehurek.com/gensim/models/word2vec.html
- Pretrained GloVe vectors: https://nlp.stanford.edu/projects/glove/
- Multilabel classification with Scikit-learn:
 - X: training data/features, Matrix (n_samples × n_features)
 - Y: traning data/labels, 0-1 Matrix (n_samples × n_classes) from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import SVC

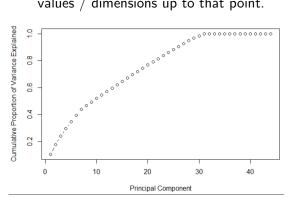
```
classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y)
```

- Instead of SVC, other classifiers (LogisticRegression ...) can also be selected.
- Prediction is again (n_samples × n_classes) 0-1 matrix classif.predict(X_test)

Selection of the number of dimensions for an embedding space

Classical Statistics: Proportion of explained variance

- e.g. with truncated SVD
- How close is the reconstruction to the original PPMI matrix?
 - $0\% \Leftrightarrow$ always prediction of the mean value (of all entries in the matrix)
 - $100\% \Leftrightarrow$ perfect reconstruction of the matrix
- One possibility is then to look where the extra explanatory utility decreases (*"kink"* in the graph, *"elbow"*), and only use the singular values / dimensions up to that point.

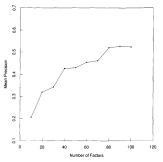


Benjamin Roth (CIS)

Selection in relation to task

- If you have annotated development data, you can try different sizes of the embedding space and evaluate the performance.
- Requires a task-specific cost function.
- Choose number with the lowest cost (with the largest utility)
- From the original LSI paper:

MED - Precision as a Function of Number of Factors



Comparison of methods for word vectors

Comparative aspects

- order: is the order of context words used in training?
- time to train: Is an efficient training possible?
- *n* > 1 **lang's**: Are embeddings in multiple languages comparable?
- **syntax**: Is the syntactic information (e.g. dependency relation) between words taken into account during training?

Further comparative aspects

- We have seen some aspects that distinguish models of word vectors.
- **compact**: Is the model compact (dense, low-dimensional) or not? (e.g., SVD vs. Wordspace)
- rare words: Can rare or out-of-vocabulary (OOV) words be represented well? (e.g., fasttext vs. word2vec)
- **units**: What are the representative units in training? Words (w), letters (characters, c), paragraphs (paragraphs, p)

Categorization according to Schütze

	compact	rare words	units	order	time to train	n>2 lang's	syntax	
WordSpace	-	0	W	-	+	-	-	
w2v skipgram	+	0	w/p	-	+	-	-	
w2v CBOW	+	-	W	-	+	-	-	
bengio&schwenk	+	?	W	+	-	-	-	
LBL	+	?	W	+	-	-	-	
CWIN	+	?	W	+	-	-	-	
wang2vec	+	?	W	+	-	-	-	
glove	+	?	W	-	+	+	-	
fasttext	+	+	c/w/p	-	+	-	-	
random	+	+	c/w/p	?	-	-	-	
CCA	+	?	W	+	-	-	-	
factorization	+				+	-	-	
multilingual	+		W		-	+	-	
dependencies	+		W			-	+	

References:

- WordSpace
 - Gerard Salton. Automatic Information Organization and Retrieval. 1968. McGraw Hill.
 - Hinrich Schütze. "Dimensions of meaning". ACM/IEEE Conference on Supercomputing. 1992.
- factorization, SVD
 - Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, Richard A. Harshman. "Indexing by Latent Semantic Analysis". JASIS 41:6. 1990.
 - Omer Levy, Yoav Goldberg. "Neural Word Embedding as Implicit Matrix Factorization". Advances in Neural Information Processing Systems. 2014.
- Word2vec skipgram, CBOW
 - ► Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean. "Efficient estimation of word representations in vector space". ICLR. 2013.
 - Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean. "Distributed Representations of Words and Phrases and their Compositionality". NIPS. 2013.

Referenzen:

- Fasttext
 - Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. "Enriching Word Vectors with Subword Information". TACL. 2017.
 - Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, Jeffrey Dean. "Distributed Representations of Words and Phrases and their Compositionality". NIPS. 2013.
 - Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov. "Enriching Word Vectors with Subword Information". TACL. 2017.
- Glove
 - Jeffrey Pennington, Richard Socher, Christopher D. Manning. "Glove: Global Vectors for Word Representation". EMNLP. 2014.
- CWINDOW / Structured Skip-Ngram
 - Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso "Two/Too Simple Adaptations of Word2Vec for Syntax Problems". NAACL/HLT. 2015.

Referenzen:

- Embeddings based on syntactic dependencies
 - Omer Levy, Yoav Goldberg. "Dependency-Based Word Embeddings". ACL. 2014.
- Multilingual embeddings
 - Tomas Mikolov, Quoc V. Le, Ilya Sutskever. "Exploiting Similarities among Languages for Machine Translation". CoRR. 2013.

Recursive Neural Networks (RNNs)

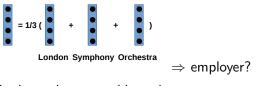
Recursive Neural Networks: Motivation

How do you ...

- ... best represent a sequence of words as a vector?
- ... combine the learned word vectors effectively?
- ... retain the information relevant to a particular task (certain features of particular words), suppress unessential aspects?

Recursive Neural Networks: Motivation

For short phrases: average vector could be one possibility



For long phrases problematic.

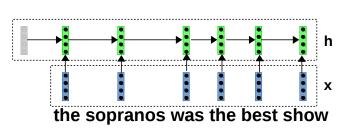
The sopranos was probably the last best show to air in the 90's. its sad that its over

- Any information about the order of words is lost.
- There are no parameters that can already during combination distinguish between important and unimportant information. (Only the classifier can try this).

Benjamin Roth (CIS)

Recursive Neural Networks: Idea

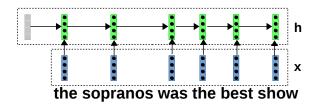
- Calculate for each position (" time step ") in the text a representation that summarizes all essential information up to this position.
- For a position t this representation is a vector $\mathbf{h}^{(t)}$ (hidden representation)
- **h**^(t) is calculated recursively from the word vector **x**^(t) and the hidden vector of the previous position:



$$h^{(t)} = f(h^{(t-1)}, x^{(t)})$$

Recursive Neural Networks

$$h^{(t)} = f(h^{(t-1)}, x^{(t)})$$



- The hidden vector in the last time step **h**⁽ⁿ⁾ can then be used for classification ("Sentiment of the sentence?")
- The predecessor representation of the first time step uses the **0** vector (containing only zeros).

Recursive function f

$$h^{(t)} = f(h^{(t-1)}, x^{(t)})$$

• The f function takes two vectors as input and outputs a vector.

• f is in most cases a combination of:

Vector matrix multiplication:

- * Simplest form of mapping a vector onto a vector.
- * First, the vectors $\boldsymbol{h}^{(t-1)}$ (k components) and $\boldsymbol{x}^{(t)}$ (m components) are concatenated (appended):

Result $[\mathbf{h}^{(t-1)}; \mathbf{x}^{(t)}]$ has k + m components.

- * Weight matrix W (size: $k \times (k + m)$) is optimized when training the RNN.
- and a non-linear function (e.g., logistic sigmoid) applied to all components of the resulting vector.
 - This is necessary so that the network can compute interesting, non-linear interactions, such as the effect of negation.

$$\boldsymbol{h}^{(t)} = \sigma(\boldsymbol{W}[\boldsymbol{h}^{(t-1)}; \boldsymbol{x}^{(t)}])$$

Summary

Advantages of word vectors

- Serve as features
- Allow generalization
- Can be learned non-supervised
- Use cases
 - type prediction
 - classification of word sentiment
- Neural networks
 - Recursive calculation of the hidden layer
 - Non-linearity allows more powerful representation than average vector